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CALCULATION OF THREE-DIMENSIONAL (3-D) INTERNAL FLOW BY

MEANS OF THE VELOCITY-VORTICITY FORMULATION ON A

STAGGERED GRID

Paul M. Stremel

Ames Research Center

SUMMARY

A method has been developed to accurately compute the viscous flow in three-dimensional (3-D)

enclosures. This method is the 3-D extension of a two-dimensional (2-D) method developed for the

calculation of flow over airfoils. The 2-D method has been tested extensively and has been shown to

accurately reproduce experimental results. As in the 2-D method, the 3-D method provides for the

non-iterative solution of the incompressible Navier-Stokes equations by means of a fully coupled

implicit technique. The solution is calculated on a body fitted computational mesh incorporating a

staggered grid methodology. In the staggered grid method, the three components of vorticity are

defined at the centers of the computational cell sides, while the velocity components are defined as

normal vectors at the centers of the computational cell faces. The staggered grid orientation provides

for the accurate definition of the vorticity components at the vorticity locations, the divergence of

vorticity at the mesh cell nodes and the conservation of mass at the mesh cell centers. The solution is

obtained by utilizing a fractional step solution technique in the three coordinate directions. The

boundary conditions for the vorticity and velocity are calculated implicitly as part of the solution.

The method provides for the non-iterative solution of the flow field and satisfies the conservation of

mass and divergence of vorticity to machine zero at each time step. To test the method, the calcula-

tion of simple driven cavity flows have been computed. The driven cavity flow is defined as the flow

in an cnclosure driven by a moving upper plate at the top of the enclosurc. To demonstrate the ability

of the method to predict the flow in arbitrary cavities, results will be shown for both cubic and

curved cavities.

INTRODUCTION

The numerical prediction of vortex-dominated flow is paramount to the understanding of the

flow about aircraft configurations. This is especially important to the design analysis of rotorcraft

when considering download, thc force exerted on the vehicle due to the rotor-wake interaction with

the fuselage components. Download limits helicopter performance in hover and is a significant

problem in the design of tilt-rotor configurations, where the lifting wing is immersed in the rotor

wake. Because the download caused by the rotor wake severely limits the hover performance of tilt-

rotor configurations, a method for accurately predicting tilt-rotor download would provide for the

design of configurations with improved hover performancc.



A two-dimensional(2-D) methodhaspreviouslybeendevelopedto calculatetheflow aboutbluff
bodies,reference1.Resultshavealsobeenobtainedfor airfoils with andwithout adeflectedflap at
-90 degincidence,reference2. Additionally, theeffectof Reynoldsnumberandturbulencehave
beencomputedfor theXV-15 wing airfoil with andwithout adeflectedflap, reference3. Theresults
of reference3 indicatethattheflow field solutionis highlyReynoldsnumberandturbulencedepen-
dent.Excellentcorrelationbetweenpredictionandtestwereobtainedwhenmatchingthetest
ReynoldsnumberandincorporatingtheBaldwin/Barthturbulencemodel,reference4. Thiscorrela-
tion providesconfidencein usingthecurrentmethodasatool to further investigatethereductionof
dragon airfoils at -90 degincidence.

The validated2-Dcomputationalmethodhasalsobeenappliedto calculatethe influenceof
upper-or lower- surfacefencesonairfoil aerodynamics,reference5. In particular,theflow aboutan
XV-15 airfoil with a30percenttrailingedgeflapdeflected60degat-90 degincidencewascon-
sidered.The flow is calculatedfor aReynoldsnumberof onemillion while modelingturbulentflow.
Theresultsof that investigationindicatethatsignificantreductionsin dragareobtainedwith the
inclusionof fences.In particular,a 35percentdragreduction,with respectto thebasicairfoil value,
wasachievedfor a lower-surfacefencelocatedattheairfoil leadingedge.

Theability of the2-Dmethodto accuratelycomputetheflow aboutacomplexgeometrynormal
to thefree-streamflow andthedirectextensionof themethodto 3-D analysisarethebasisfor this
paper.In orderto predictdownload,a methodis requiredthatcan,notonly, computetheflow about
complex3-D bodies,but alsocanaccuratelypredictthewing-basepressure.The 3-Dextensionof
the2-D analysispromisesto besucha method.

Prior to solving the3-Dexternalflow problemasimplerproblemis addressedto validatethe
governingequationsandthesolutiontechnique.Theflow in adrivencavity isconsideredto testthe
method.Thedevelopmentof themethodis presentedin thenextsectionloilowed by theapplication
of themethodto thedrivencavity problem.

PROBLEM FORMULATION

The flow field is modeled by the velocity/vorticity form of the unsteady, incompressible Navier-

Stokes equations. The nondimensional governing equations in Cartesian coordinates are written for

the continuity equation,

_'ot7 =0 (l)

and for the vorticity transport equation,

cot + × ( × ) = v 2Fo/ ,% (2)

with V 2 = 032( )/03 × 2 + 032( )/03y2 + 032( )/03z 2, where (x,y,z) are the Cartesian coordinates, Re is the

Reynolds number, and t is the time. The vorticity, co, is defined by



The nondimensional variables are written

x = x'/l,y = y'/l,z = z'/l

u = u'/Uoo,v = v'/U_,w = w'/U_o

¢o = oY / (Uoo / I),t = t" / (l / U_),R e = Uool / v

(3)

where

u, v, and w are the Cartesian components of the velocity, and

1 = reference length

Re = Reynolds number based on 1

Uoo = free-stream velocity

v = kinematic viscosity

When the Cartesian equations are transformed into generalized-orthogonal-curvalinear coordi-

nates, the governing equations become as follows (see ref. 6 for details).

For the continuity equation,

_,.._ s [_(h2h,,,,)_(h,h3.:)<_(h,h:,,,)]=o
h,h_h,L _ + a¢_ + o_¢__J

(4)

and for the definition of vorticity,

+

_t _ a¢2d.
(5)

where (41,_2,_3) are the transformed coordinates, u |, u 2, and u 3 are the orthogonal velocity compo-

nents in the transformed coordinates, and h 1, h 2, and h 3 are the vector lengths,
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The vorticity transport equation, equation 2, can be rewritten as:

&t +ff'_T&-&*_'ff = V2&/Re (6)

This form offers some unique issues regarding the dot product on the left-hand side and the

Laplacian operator on the right-hand side of the equation. Because both the gradient and the

Laplacian operator act on a vector quantity, the dependence of the vector components and the unit

vectors must be considered. The expression for _ • _7& becomes:

/_-V&

o,, ( ah2 ah,) o,, ( ah2" ae_)]_+ +- U-_-- -- + "-""'_'_ U-_--

fro go) 2 111112.k "a_l ul a_2 ) h2h3 (" a_3 3_)ja2

/7, I a( ),_Where, V( )= I O( )a,._ a 2+-_
a_l h2 0_2

! _--() 6-_]. Details can be found in Appendix 1.h_ 4. J

The expression for the Laplacian of the vorticity vector on the right-hand side of equation 6 is

extremely long and can also be found in Appendix I.

The boundary conditions for the transformed governing equations at the enclosure surface are

calculated from the no-slip condition as

u I = u 2 = u 3 = 0 (7)

except at the upper surface of the enclosure at which the velocity is specified. The surface vorticity is

calculated from equation 5.
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The flow is started impulsively. Therefore, at t = O, the velocity on the upper surface of the

enclosure is set to the prescribed boundary condition and the velocity everywhere inside the enclo-

sure is set equal to zero. The vorticity on the upper surface of the enclosure is calculated from

equation 5 and is set equal to zero everywhere else in the enclosure. The surface vorticity is calcu-

lated implicitly as part of the solution after the impulsive start. The computation is advanced until a

desired time has been reached or until the flow has demonstrated stable periodic flow within the
enclosure.

NUMERICAL METHOD

The solution is obtained by solving the finite-difference representations of the governing equa-

tions on a computational mesh. The grid is body-fitted to the interior of the 3-D enclosure.

In the staggered-grid method, the flow-field variables are not defined at the mesh nodes only.

Rather, the components of vorticity are defined at the mid-points of the mesh cell sides, and the

orthogonal flow-field velocity components are defined at the centers of the mesh cell faces. The vor-

ticity and velocity components on the staggered grid are depicted in figure 1. The staggered-grid ori-

entation of the variables provides for the conservation of vorticity at the mesh nodes and the solution

of the continuity equation at the mesh cell centroids. The vorticity and flow-field velocities are cal-

culated by a fully coupled implicit technique on the staggered mesh. The coupled method solves for

the vorticity and velocity components by means of a block-tridiagonal inversion for fractional steps.

A representation of the fractional step method is presented in Appendix 2. Each fractional step repre-

sents a computational sweep in one of the coordinate directions. These computational sweeps are

depicted in figures 2-4.

In figure 2, the computational sweep for coordinate El is shown. The governing equations for the

vorticity and velocity components are selected to take into account the spatial derivatives in _1. With

this in mind, the conservation of vorticity is solved for c01. The vorticity components o)2 and (0 3 are

solved using the second and third components of the vorticity transport equation, equation 6. The

continuity equation, equation 4, is solved for u I, and the velocity components u2 and u3 are solved

from the third and second components of vorticity, respectively, in equation 5. This allows for the El

derivatives of u2 and u3 to appear in the governing equation for each velocity component. Then

for u2,

(a(h2,.2) a(h,.,)
=

and for u3,



In figure 3, thecomputationalsweepfor coordinate_2is shown.Thegoverningequationsfor the
vorticity andvelocity componentsare selected to take into account the spatial derivatives in _2. Now,

the conservation of vorticity is solved for oo2. The vorticity components o31 and 033 are solved using

the first and third components of the vorticity transport equation, equation 6. The continuity equa-

tion, equation 4, is solved for u2, and the velocity components Ul and u3 are solved from the third

and first components of vorticity, respectively, in equation 5. This allows for the _2 derivatives of u I

and u3 to appear in the governing equation for each velocity component. Then for ul,

o>3=

and for u3,

In figure 4, the computational sweep for coordinate _3 is shown. The governing equations for the

vorticity and velocity components are selected to take into account the spatial derivatives in _3. Now,

the conservation of vorticity is solved for 033- The vorticity components 031 and 032 are solved using

the first and second components of the vorticity transport equation, equation 6. The continuity equa-

tion, equation 4, is solved for u3, and the velocity components Ul and u2 are solved from the second

and first components of vorticity, respectively, in equation 5. This allows for the _2 derivatives of u I

and u3 to appear in the governing equation for each velocity component. Then for Ul,

and for u2,

The boundary conditions are calculated implicitly as part of the solution. After the inversion of

these block-tridiagonal systems, the solution for the present time-step is obtained. The solution is not

iterated and the continuity equation is satisfied to machine zero. The solution is then advanced by

updating the flow-field variables and solving the flow for the next time-step. The solution is termi-

nated at a desired time or after sufficient time has elapsed for demonstration of the flow-field

periodicity.
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RESULTS

In order to test the method, the solution to the driven cavity problem was computed. All solutions

were computed for a Reynolds number of 100. This geometry was considered to test the methodol-

ogy and not to analyze the flow of driven cavities. The current formulation provides for the solution

of 3-D, incompressible flow for arbitrary geometries and not constrained to Cartesian coordinates.

The driven cavity problem is applied for a cubic cavity with constant coordinate spacing and with a

cosine spacing, which clusters the grid lines at the boundaries. The results are compared to those

computed in reference 8 for a cubic cavity of constant grid spacing in Cartesian coordinates. A

curved cavity is also considered, again with a constant coordinate spacing and a cosine spacing for

the grid coordinates. The cross-flow geometry for the four grids considered are shown in figures 5-8.

The 3-D grids are constructed by stacking the cross-flow geometry. The velocity of the upper surface

of the cavity is specified and held constant. The solution is started impulsively from rest and is con-

tinued until a steady solution is reached.

Cubic Cavity - Constant Grid Spacing

The driven cavity flow for the geometry of figure 5 is computed. For this solution, x is synony-

mous with _1, Y with _2, and z with _3. The upper plate, the x-y plane at maximum z, is held at a

constant velocity, Uoo = 1.0. The vorticity contours at the mid-plane locations are shown in figure 9.

The _1 vorticity, shown in figure 9(a), demonstrates the symmetric nature of the flow field with

opposite vortices at the center of the plane and flow up the walls at y = 0 and y = 1.0. Additionally,

secondary vortices form on the bottom of the cavity and on the upper plate. The _2 vorticity, shown

in figure 9(b), develops similar to the vorticity for a 2-D solution of the driven cavity problem. The

_3 vorticity, shown in figure 9(c), demonstrates the symmetric nature of the cavity flow with sec-

ondary vortices on the upstream wall. The vorticity contours of figure 9 are similar to the vorticity

contours presented in reference 8.

Cubic Cavity - Cosine Grid Spacing

The driven cavity flow for the geometry of figure 6 is computed. This is similar to the previous

solution. However with the increased grid resolution at the wall, additional flow features in the form

of secondary vortices are resolved. Here again, x is synonymous with _,1, Y with _2. and z with _3 and

the upper plate is held at a constant velocity, Uoo = 1.0. The vorticity contours at the mid-plane loca-

tions are shown in figure 10. The _l vorticity, shown in figure 10(a), demonstrates the symmetric

nature of the flow field with opposite vortices at the center of the plane and flow up the walls at

y = 0 and y = 1.0 and the enhanced flow features, such as, secondary vortices on the bottom of the

cavity and on the upper plate. The _2 vorticity, shown in figure 10(b), develops similar to the

vorticity in the 2-D solution of the driven cavity problem and the previous vorticity shown in

figure 9(b). Vortices in the lower corners of the cavity are clearly predicted. The _3 vorticity, shown

in figure 10(c), demonstrates the symmetric nature of the cavity flow with secondary vortices on the

upstream and downstream wall. The vorticity contours in figure 10 are similar to those of figure 9

and the vorticity contours presented in reference 8.



Curved Cavity - Constant Grid Spacing

The driven cavity flow for the geometry of figure 7 is computed. For this solution, r, or radius, is

synonymous with _1, Y with _2, and 0 with _3. The upper plate, the x-y plane at maximum z, is held

at a constant velocity, Uoo = 1.0, see figure 7. The vorticity contours at the mid-plane locations are

shown in figure I 1. The _1 vorticity, shown in figure 1 l(a), again demonstrates the symmetric nature

of the flow field with opposite vortices at the center of the plane and flow up the walls at y = 0 and

y = 1.0. Secondary vortices shown for the cubic cavity, figure 9(a), are not present here owing to the

curvature and increased height of the cavity, both of which tend to stagnate the flow at the bottom of

the cavity. The _2 vorticity, shown in figure 1 l(b), develops similarly to the vorticity shown in.

figure 9(b) for the cubic cavity. However, the vorticity develops further down the downstream wall

due to the curvature of the cavity. The _3 vorticity, shown in figure 11 (c), demonstrates the symmet-

ric nature of the cavity flow with secondary vortices on the upstream wall.

Curved Cavity - Cosine Grid Spacing

The driven cavity flow for the geometry of figure 8 is computed. Here r, or radius, is synony-

mous with El, Y with _2, and 0 with _3. The upper plate, the x-y plane at maximum z, is held at a

constant velocity, Uoo = 1.0. The vorticity Contours at the mid-plane locations are shown in figure 12.

The _1 vorticity, shown in figure 12(a), again demonstrates the symmetric nature of the flow field

with opposite vortices at the center of the plane and flow up the walls at y = 0 and y = 1.0. The sec-

ondary vortex structure shown on the upper plate is better defined, when compared to that of the

constant grid spacing, figure 1 l(a). The _2 vorticity, shown in figure 12(b), develops similar to the

vorticity shown in figure 11 (b). However, comer vortices can be seen in the bottom of the cavity and

increased rollup of the primary vortex in the center of the cavity. The _3 vorticity, shown in

figure 12(c), demonstrates the symmetric nature of the cavity flow with secondary vortices on the

upstream and downstream walls.

CONCLUSIONS

A method has been developed to calculate accurately the viscous flow in 3-D enclosures. The

method provides for the non-iterative solution of the incompressible Navier-Stokes equations by

means of a fully coupled implicit technique. To demonstrate the method, the calculation of simple

driven cavity flows has been considered. The driven cavity flow is defined as the flow in an enclo-

sure driven by a moving upper plate at the top of the enclosure. The intent was not to present a study

of cavity flows, but to determine the ability of the method to predict arbitrary internal 3-D flow.

Therefore, results were shown for both cubic and curved cavities with constant and varying mesh

spacing.

The predicted vorticity contours for a cubic cavity with constant mesh spacing were in close

agreement with the contours shown in reference 8. The method predicted the emergence of the pri-

mary vortices, as well as, secondary vortices. Similar results were shown for a cubic cavity with a



cosine spacing for the grid points. The cosine spacing of the grid points concentrates the mesh points

near the boundaries. With the cosine spacing, the primary and secondary vortices were enhanced.

The predicted vorticity contours for a curved cavity with constant mesh spacing were similar to

those for the cubic cavity, and were again enhanced when the solution was computed on a curved

cavity with a cosine distribution for the grid points.

The comparison of the present results with other computations for the cubic cavity flow and the

comparison of the cubic cavity flow with the curved cavity flow provide credibility to the methodol-

ogy. Considerable work is required to extend the method to external flows, to incorporate turbulence

models and to apply the method to realistic problems.
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APPENDIX 1

• This Appendix presents the development of the dot-product, divergence, and LaPlacian operator of a

vector quantity and are integral to the development of the generalized governing equations in three-

dimensional (3-D) space.

The expressions in this Appendix are written for a general vector quantity,

= FI5 i + +F252 + F3/_3

The dot product of a vector with the gradient of another vector is written,

fi • V/_ = fi • V(Fj51 + Fl52 + F_a3)

or,

ii.VF = fi'VFi/i , + fi'VF2/_ 2 +fi'VF353 + FI(fi'V/]I)+ F2(n'Va2)+ Fz(_.V53)

The general expressions for the dot product and the gradient are, respectively,

Vofi'- 1 rO(h,,thF,) O(h, h3F2) D(h, h2F3)

hlh2h3 L + a< +

and,

Using the following expressions for the derivatives of the unit vectors,

o351 i oqhl_ 1 0t4 cg/il _ 1 o3/1._ 051 1 Oh_

- a_ /i_, 3_ a2' - " 53a_t hza_2 " h3a_ " a_:2 /4 a_3 t4a_jl

c]/i_ 1 oltq_ o_/i-, 1 olb,_ 1 o1/1_,_ o_/L 1 3t23 _

c)/i3_ ! Oh i 51 , o353_ I o3tl._ c)/i3_ 1 olh-__ 1 o3h3
_ = - _'_3 hi '0_:1 t228¢2

PRECEDING PAGE BLANK NOT FIL_:'ib
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Ihe dot product of the unit vectors become,

Or,

and,

Or,
h2_¢2 h3 0_3j

and,

n*V(_2-_nl I _]t I n2ff 10)h2/i

" - % h2 _2 J

0[,
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Then the dot product becomes,

/i ,VP

=/i • VFt/i 1 + _ * VF2/i 2 + _ • VF3/i 3

+ F] I nl ( l Ohl _ l Ohl ) n2a2_113 +- l Oh,
_2 +

LhI k ho _2 O'l. h3 a_3 h2 II I

I _ ! o_hI + n 2( t ah 2_ 1 ckh, _

+F_L/',"/'__a_2_' _k /,, a_,a' /'3a_3a3
+

nl 1 ah I n,, 1 0/l 2 n_( 1 Ohm_+F_ ttl h3 °3_3 al + " a2 + " " al" t_ h3 0_3 /-7( h, 0_,

n3 1 Oh3 ]tl 3 h 1 a_l _13

n 3 1 ah 3 ]h3 h2 o3_2/i3

h2 a_2 a2

or,

,_. V,_

+ ( ah, m,3llc,= _.v_,+ < (,,,a,,, a_l _3 ,,, .3
,,,,,2t _- "__; ,v,-7 _- -<l)J'

+[ _ . V F, + F1 ( n_ Oh__z2 _ c_hl )- /',/'2k - a_, '" a_---7

ah_
+ /z*VF3+ FI (nlal!3_nl +

h,h3k " a¢,

F3 (n, Oh, Oh_ i l-
+ _ -- H'_ -_-_IIa'_

112113 ( " ()b3 " as2 )J -

F2 (n_ alb ah2 )l_
,,2,,,v a_--7-,,2_ )y.,

The Laplacian of a vector is as follows.

The Laplacian of a scalar is written,

V?( )- tqheh3 hi
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For whichthe Laplacianfor a vectorquantityiswritten,

V2p

- hlh2 -'ln3LO¢lt ni t`_ 0_1 Xi--+gi 2 F 2 2_3 +F,_¢, -g-g, a¢, 577, a¢,#j

ht h2h 3

i

_h2h3

a' a+5 F, a¢2 a-_-2+F2a¢2 a35-_7+F3a¢2))]

La¢,t h3 t e?_--"7 Fi 0#3 a2 a_3 F2 a_3 ('73 a#-_3 F3 a_3 ))j

After evaluation of the above terms using the product rule, incorporating the derivatives of the unit

vectors presented above and considerable rearranging, the Laplacian of a vector quantity is written,

v2p

1

hlh2h 3

-_1 t, _ a_l +-_-22 h2 a42 + a_3 t h3 a{3

(Oh3] 2 h3 (Oh,) 2
_ tv2 FI ___FI ---

h,h3 a¢,) h,h_ t
a,,,

hlh2 1_,_2)-hlh-7 (a{3)

+___1 F2h3olhl aF 2

hlh2h3 L h,a_2a_,

+112 h20_hl o3F3

hlh2h3 L hi a{3 °_1

[-2 h3 c?h2 OF2+

hlh2h3 L h2 041 042

hlh2h3 _3 F2 042 o_41

+ _ [-2 tve ah3 o_&

hlheh3 L h,04,a4,

- hi c7_2 al

- a (h2Oh,)]

" h2 c)41 {ll

+--I (Oh 20,)]a,,,,F'(< ee,

a a,,3)]F3 0{3 _,tt3 a4i al
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h 2 _gh3 OF I

h3 a_l a_3

1
+m

hlh2h3 2 hi ah 3 o3F2h3 a_2 o3_3
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APPENDIX 2

This Appendix presents the development of the fractional-step method of reference 7 for three-

dimensions. Consider the Cartesian form of the vorticity transport equation in three dimensions,

without considering the vortex-stretching terms. The equation is written,

&o 8(,,o_) 8(vo))8(wco) /
+ + -t --

Ot Ox Oy Oz Re

The fractional step method is written, for the three fractional steps, as

for the x-coordinate step,

for the y-coordinate step,

CO** _ 09 ll

At (  lv°t */ 8(uo_)* 8(.co)" + +--

1 (1(0203 * c32(_0nfie -2 cgx2 + Ox 2 ( c)2 co** c)2 con ] 02 _°n+ Ov 2 _ &2 + c)z2

8( wco)"
+

o3Z

and for the z-coordinate step,

co,,+/_co,, + L[ 8("°J) *
At 21 c)x

\

Re 2[ Ox 2
t8x2 + &,--_ + &,2

_( 8(wco)" + / 8(ww)"
f

+ & 8z

1(82o) n + 1 c)2 con
+--

+ _ 8z2 8z 2

Then

co - 8(.co) 8(,,co)n 8(vco)n 8(.,co)"
2 -S; _ 57.,. _ _ +2 _,, _2

[ c)2con ] c)2con O2co n
I c)2co* _-_. + 2 _+ 2

=-'_e c)x_- Ox 2 c)v2 c)z 2
* *)co* _ co
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yields,

yields,
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Figure 1. Schematic for staggered-grid formulation.
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Figure 2. Schematic for staggered-grid formulation, _1 solution sweep.
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Figure 3. Schematic for staggered-grid formulation, _2 solution sweep.
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Figure 4. Schematic for staggered-grid formulation, ¢3 solution sweep.
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Figure 5. Geometry for cubic cavity, constant spacing, 17 × 17 × 17.
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Figure 6. Geometry for cubic cavity, cosine spacing, 17 x 17 x 17.
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Figure 7. Geometry for curved cavity, constant spacing, 17 x 17 x 17.
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Figure 8. Geometry for curved cavity, cosine spacing, 17 × 17 × 17.
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Figure 9_ Vorticity contours for cubic cavity, constant spacing, mid-plane locations, 17 x 17 x 17.

a) _l vorticity contours, b) _2 vorticity contours, c) _3 vorticity contours.
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Figure lO. Vorticity contours for cubic cavity, cosine spacing, mid-plane locations,

17 × 17 x 17. a) _1 vorticity contours, b) _2 vorticity contours, c) _3 vorticity contours.
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Figure 1 I. Vorticity contours for curved cavity, constant spacing, mid-plane locations,

17 x 17 x 17. a) _1 vorticity contours, b) _2 vorticity contours, c) _3 vorticity contours.
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Figure 12. Vorticity contours for curved cavity, cosine spacing, mid-plane locations,

17 × 17 × 17. a) _1 vorticity contours, b) _2 vorticity contours, c) _3 vorticity contours.
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